20 research outputs found

    Anomalous diffusion: A basic mechanism for the evolution of inhomogeneous systems

    Get PDF
    In this article we review classical and recent results in anomalous diffusion and provide mechanisms useful for the study of the fundamentals of certain processes, mainly in condensed matter physics, chemistry and biology. Emphasis will be given to some methods applied in the analysis and characterization of diffusive regimes through the memory function, the mixing condition (or irreversibility), and ergodicity. Those methods can be used in the study of small-scale systems, ranging in size from single-molecule to particle clusters and including among others polymers, proteins, ion channels and biological cells, whose diffusive properties have received much attention lately.Comment: Review article, 20 pages, 7 figures. arXiv admin note: text overlap with arXiv:cond-mat/0201446 by other author

    Percolation and cooperation with mobile agents: Geometric and strategy clusters

    Get PDF
    We study the conditions for persistent cooperation in an off-lattice model of mobile agents playing the Prisoner's Dilemma game with pure, unconditional strategies. Each agent has an exclusion radius rP, which accounts for the population viscosity, and an interaction radius rint, which defines the instantaneous contact network for the game dynamics. We show that, differently from the rP=0 case, the model with finite-sized agents presents a coexistence phase with both cooperators and defectors, besides the two absorbing phases, in which either cooperators or defectors dominate. We provide, in addition, a geometric interpretation of the transitions between phases. In analogy with lattice models, the geometric percolation of the contact network (i.e., irrespective of the strategy) enhances cooperation. More importantly, we show that the percolation of defectors is an essential condition for their survival. Differently from compact clusters of cooperators, isolated groups of defectors will eventually become extinct if not percolating, independently of their size

    On the Modeling of Droplet Evaporation on Superhydrophobic Surfaces

    Full text link
    When a drop of water is placed on a rough surface, there are two possible extreme regimes of wetting: the one called Cassie-Baxter (CB) with air pockets trapped underneath the droplet and the one characterized by the homogeneous wetting of the surface, called the Wenzel (W) state. A way to investigate the transition between these two states is by means of evaporation experiments, in which the droplet starts in a CB state and, as its volume decreases, penetrates the surface's grooves, reaching a W state. Here we present a theoretical model based on the global interfacial energies for CB and W states that allows us to predict the thermodynamic wetting state of the droplet for a given volume and surface texture. We first analyze the influence of the surface geometric parameters on the droplet's final wetting state with constant volume, and show that it depends strongly on the surface texture. We then vary the volume of the droplet keeping fixed the geometric surface parameters to mimic evaporation and show that the drop experiences a transition from the CB to the W state when its volume reduces, as observed in experiments. To investigate the dependency of the wetting state on the initial state of the droplet, we implement a cellular Potts model in three dimensions. Simulations show a very good agreement with theory when the initial state is W, but it disagrees when the droplet is initialized in a CB state, in accordance with previous observations which show that the CB state is metastable in many cases. Both simulations and theoretical model can be modified to study other types of surface.Comment: 23 pages, 7 figure

    Symbiotic behaviour in the Public Goods game with altruistic punishment

    Full text link
    Finding ways to overcome the temptation to exploit one another is still a challenge in behavioural sciences. In the framework of evolutionary game theory, punishing strategies are frequently used to promote cooperation in competitive environments. Here, we introduce altruistic punishers in the spatial public goods game. This strategy acts as a cooperator in the absence of defectors, otherwise it will punish all defectors in their vicinity while bearing a cost to do so. We observe three distinct behaviours in our model: i) in the absence of punishers, cooperators (who don't punish defectors) are driven to extinction by defectors for most parameter values; ii) clusters of punishers thrive by sharing the punishment costs when these are low iii) for higher punishment costs, punishers, when alone, are subject to exploitation but in the presence of cooperators can form a symbiotic spatial structure that benefits both. This last observation is our main finding since neither cooperation nor punishment alone can survive the defector strategy in this parameter region and the specificity of the symbiotic spatial configuration shows that lattice topology plays a central role in sustaining cooperation. Results were obtained by means of Monte Carlo simulations on a square lattice and subsequently confirmed by a pairwise comparison of different strategies' payoffs in diverse group compositions, leading to a phase diagram of the possible states

    Geometrical distribution of Cryptococcus neoformans mediates flower-like biofilm development

    Get PDF
    Microbial biofilms are highly structured and dynamic communities in which phenotypic diversification allows microorganisms to adapt to different environments under distinct conditions. The environmentally ubiquitous pathogen Cryptococcus neoformans colonizes many niches of the human body and implanted medical devices in the form of biofilms, an important virulence factor. A new approach was used to characterize the underlying geometrical distribution of C. neoformans cells during the adhesion stage of biofilm formation. Geometrical aspects of adhered cells were calculated from the Delaunay triangulation and Voronoi diagramobtained fromscanning electronmicroscopy images (SEM). A correlation between increased biofilm formation and higher ordering of the underlying cell distribution was found. Mature biofilm aggregates were analyzed by applying an adapted protocol developed for ultrastructure visualization of cryptococcal cells by SEM. Flower-like clusters consisting of cells embedded in a dense layer of extracellular matrix were observed as well as distinct levels of spatial organization: adhered cells, clusters of cells and community of clusters. The results add insights into yeast motility during the dispersion stage of biofilm formation. This study highlights the importance of cellular organization for biofilm growth and presents a novel application of the geometrical method of analysis

    Spatio-temporal conjecture for diffusion

    Full text link
    We present here a conjecture about the equivalence between the noise density of states of a system governed by a generalized Langevin equation and the fluctuation in the energy density of states in a Hamiltonian system. We present evidence of this for a disordered Heisenberg system.Comment: 6 pages, 1 figure. Submitted to Physica

    Heterogeneous contributions can jeopardize cooperation in the Public Goods Game

    Full text link
    When studying social dilemma games, a crucial question arises regarding the impact of general heterogeneity on cooperation, which has been shown to have positive effects in numerous studies. Here, we demonstrate that heterogeneity in the contribution value for the focal Public Goods Game can jeopardize cooperation. We show that there is an optimal contribution value in the homogeneous case that most benefits cooperation depending on the lattice. In a heterogeneous scenario, where strategy and contribution coevolve, cooperators making contributions higher than the optimal value end up harming those who contribute lower. This effect is notably detrimental to cooperation in the square lattice with von Neumann neighborhood, while it can have no impact in others lattices. Furthermore, in parameter regions where a higher-contributing cooperator cannot normally survive alone, the exploitation of lower value contribution cooperators allows their survival, resembling a parasitic behavior. To obtain these results, we employed various distributions for the contribution values in the initial condition and conducted Monte Carlo simulations

    A Simple Non-Markovian Computational Model of the Statistics of Soccer Leagues: Emergence and Scaling effects

    Full text link
    We propose a novel algorithm that outputs the final standings of a soccer league, based on a simple dynamics that mimics a soccer tournament. In our model, a team is created with a defined potential(ability) which is updated during the tournament according to the results of previous games. The updated potential modifies a teams' future winning/losing probabilities. We show that this evolutionary game is able to reproduce the statistical properties of final standings of actual editions of the Brazilian tournament (Brasileir\~{a}o). However, other leagues such as the Italian and the Spanish tournaments have notoriously non-Gaussian traces and cannot be straightforwardly reproduced by this evolutionary non-Markovian model. A complete understanding of these phenomena deserves much more attention, but we suggest a simple explanation based on data collected in Brazil: Here several teams were crowned champion in previous editions corroborating that the champion typically emerges from random fluctuations that partly preserves the gaussian traces during the tournament. On the other hand, in the Italian and Spanish leagues only a few teams in recent history have won their league tournaments. These leagues are based on more robust and hierarchical structures established even before the beginning of the tournament. For the sake of completeness, we also elaborate a totally Gaussian model (which equalizes the winning, drawing, and losing probabilities) and we show that the scores of the "Brasileir\~{a}o" cannot be reproduced. Such aspects stress that evolutionary aspects are not superfluous in our modeling. Finally, we analyse the distortions of our model in situations where a large number of teams is considered, showing the existence of a transition from a single to a double peaked histogram of the final classification scores. An interesting scaling is presented for different sized tournaments.Comment: 18 pages, 9 figure
    corecore